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Purpose

Investigate the practicalapplications of machine leaming (ML) algorithms in several
scientificareas,

and

Utilize cloud resources to provide usable services not only within the scientific
community, butto everybody!
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Case studies

» quality evaluation metrics for the tomographicimage reconstruction of positron
emissiontomography (PET) images

» health implications of the vitamin D absorption function. Results showed that
commercially available cloud resources are oversufficientto consolidate results
from a variety of teams and applications and contribute tothe builtup of a
valuable shared knowledge repository

» the investigations of the demographic determinants influencing the perception
of corruptionincidents within different industry sectors
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Achievements

Using the suggested approach in the contextof a widely available cloud service for
feeding the training algorithms, will contribute to more accurate automation and
successful operation of related activitiesinthe application domains, breaking thus

the knowledge silos and contributing to a more sustainable environment.
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» CASESTUDY

Modulation Transfer Function calculation using
cloud-based Machine Learning Services

Evangelia Pappa
John Filos
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Definitions

Spatial resolution —the amount of geometric detail
* How close can two points be before you can’t
distinguish them

100 :: 100
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Imaging

As spatial separation decreases,
the “good” system maintains clear
separation of pointsource images,
while the “poor” system
eventually can no longer
distinguish them.

MTF quantifies this phenomenon

in terms of contrast between the

center peak intensities versus v v

intensity at their midpoint across

a scale of separationdistances. At large separations, even a poor system can
completely resolve the two images. As
separation decreases, only the good systems
can still recognize separate sources.
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Image Quality in NuclearImaging

The response of the system to the incident signal amplitudes can be
described bythe:

Modulation Transfer Function (MTF),

which expresses the system’s response in the spatial frequency domain
by taking the Fourier transform of the corresponding PSF from a
reconstructed cross-sectional image.



e MTF is a measure of
intensity contrast
transfer perunit
resolution ofanimage
orsignal.

e Itis used in optics,
electronics, and relatec
signal processing
applications.
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curves obtained from iterative STIR reconstructed LSFimages
(thenumber of subsets was kept fixed and the number ofiterations was

Simulationofthe plane source
for the MTF measurement

Schematicrepresentation of
the line profile selection




Practical machine learning based on cloud computing resources
TMREES’19, Beirut, Libanon

-Subset format...
1 1 1 1 1 1 3 3
[0 iterations 2 6 8 14 20 2 6
- 1, 000001 000001,0000€0,995331,000001,0000C 1,000001,0000C
0 0 0 4 0 0 0 0
- 0,924410,99517 0,999300,99941 0,998750,99931
6 20,9987 1 5 7 1 5
- 0,730220,9808720,9948;0,9981 Subs Spatial
0,492950,957370,98835 e [t i MTF
7 90,087c 1 1 1 0,000000 1,000000
0,284360,925480,9793¢60,9848 2 1 2 0,000000 1,000000
6 8 3 1 6 0,000000 1,000000
- 0,140170,886030,967950,9793
9 6 '
- 0,05905 0,954240,9627
10,8401 1
. 8 0,000000 0,995334
) )
0 21 20 0,000000 1,000000




Practical machine learning basedon cloud computing resources &
TMREES’19, Beirut, Libanon

g Conerin,

&

ET - MTF > Evaiaie Model > Bvaiatn |
000743
P 0017249
= G 002383
0002382
0997618
Determination
=




Practical machine learning basedon cloud computing resources 5‘-“ (‘) %

TMREES’19, Beirut, Libanon :
B

& Conlers,
o,
hy,

» CASESTUDY

Bio-uv products

Neural network calculation of Vitamin-D and DNA-damage doses from
spectral UVirradiance using cloud-based services

Michael Taylor,
Lamprini Kontopoulou,

v Trachans® Surftemp Satellite Remote Sensing Group
arvara lrachana™
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SATELLITE UV DOSE

« Satellites like SCCAMACHY and GOME-2 have operational processing algorithms
that retrieve erythemal UV dose (k) m2) from space:

Erythemal UV dose (kJ m™~)
GOME 2, METEOSAT - KNMVESA 22 June 2016 Used to calculate the UV
R it 2 index_in Greece and across

http://meteo.gr/u

v.cfm
Van Geffen, J., Van Weele, M., Allaart, M. and Van der A,

R.:2017, TEMIS UV index and UV dose operational data
products:


http://www.temis.nl/uvradiation/UVarchive.html
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BIOLOGICAL UV PRODUCTS

« Interestingly, you can use the satellite UV together with window functions
(“action spectra”) to calculate important biological UV products across the Earth’s
surface:

10402
. IE erythemal action speotrum
F - DNA damago acton specrun
itami " Vitamin D action spectrum (draft
1) vitami nD dose 1es01 N Vitamin D action spectrum (inal)
2) DNA-damage dose *
10400 b———————y¢
1e-01 A
o 1e-02 v
Zempia, M. M., van Geffen, J. H., Taylor, w-c we i uvA
M., Fountoulakis, 1., Koukouli, M. E.,van - B
Weele, M., Bais, A, Meleti, C., Bals, D. ! X
(2017). TEMIS UV product validation s
using NILU-UV ground-based 1e-04 ..
measurements in Thessaloniki, Greece. | T TTmmssssos
Atmospheric Chemistry and Physics, 1e-05

&
17(11), 7157-7174. 360 380 00
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* Using the viewing potential of satellites, this means we can generate maps of
these UV products for most of the Earth surface - but only once a day:

lrh=a0n Y e

Van Geffen, J., Van Weele, M., Allaart, M. and Van der A, R.:2017, TEMIS UV index and UV dose operational
data products: htto://www.temis.nl/uvra diation/U Va rchive htm|


http://www.temis.nl/uvradiation/UVarchive.html
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* As well as being sensitive to cloud, the UV reaching ground is also sensitive to
absorbing aerosol (e.g. desert dust) —the combination of these 2 factors is a
challenge for neural network models:

Daily erythemal UV dose (kI/m2) KNMI/ESA
Jun

l GOME

-
o

Van Geffen, J., Van Weele, M., Allaart, M. and Van der A, R.:2017, TEMIS UV index and UV dose operational
data products: |
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BPNN MODEL

* A high frequency (1 minute interval) back-propagation neural network (BPNN) model
has recently been developed to calculate these biological products from UV irradiances
at 5 wavelengths plus the solar zenith angle (SZA) as inputs:

Inputs Layer 1 Layer 2 Outputs
s Y A B 1

Exthem UV dose

ONA s dose

X A =FAWIX+D) o =W a'eh) Y

Zempila, M. M., van Geffen, J. H., Taylor, M., Fountoulakis, 1., Koukouli, M.E.,van Weele, M., Bais, A., Meleti, C.,
Balis, D.(2017). TEMIS UV product validation using NILU-UV ground-based measurements  in Thessaloniki, Greece.
Atmospheric Chemistry and Physics, 17(11), 7157-7174.
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CNN MODEL

* Initial simulations using convolutional neural network (CNN) model
trainedon the same data are demonstrating similarlevels of

precision:

Ir (305 nm) Erythemal UV dose

Ir (312 nm)
Vitamin-D dose
Ir (320 nm)

Ir (340 nm) DNA-damage dose

Ir (380 nm)
SZA
Zempila, M. M., van Geffen, J. H., Taylor, M., Fountoulakis, 1., Koukoul, M.E.,van Weele, M., Bais, A, Meleti, C.,

Balis, D.(2017). TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece.
Atmospheric Chemistry and Physics, 17(11), 7157-7174.
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BPNN: DNA damage dose BPNN Vitamin-D dose
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Zempila, M. M, van Geffen, J. H, Taylor, M, Fountoulaks, I, Koukouli, M. E, van Weele, M, Bais, A, Meleti, C., Balis, D. (2017).TEMIS UV product validation using NILU-UV
ground-based measurements in Thessaloniki, Greece. Atmospheric Chemistryand Physics, 17(11),7157-7174.
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» CASESTUDY Health and Care

Working environments and Business ethics

Kyriakos N. Agavanakis )
George. E. Karpetas
Evangelia Pappa

John Filos

FOOD IMDUSTRY
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investigatethe demographic determinants influencingthe
perception of corruptionincidents within differentindustry sectors.

The majorresearchinstrumentis a self-administered questionnaire
which distributed to a random sampleof individuals workingin
Greece.
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Machine Learning as a Detecting Tool

— .
Detect fraudulent scandals

[ £ inceets | dentifyintegrityviciations

S oenacmien —
[ Corruption cases sDetect|ow inddence events
4 sidentfyred flags 1
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Persons 1000 in different industry sectors

Nepotism

Using expense claims unethically
Long private telephone calls
Surfing the internet for private purposes during working hours
Taking company resources home from private use
Arriving late at work

Insufficient effort from staff members.

Taking the credit of other people's work. . estimated

Inputs




4 Confusion Matrix s Comag,
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Predicted Class ."
’ e e v s
1 6.5%
“ 2 46.7% | 46.7T% | 33% 33%
E]
o]
g 3 200% | 520% | 20.0% | 8.0%
<<
4 14.3%
H
Overall accuracy 0.77

Average accuracy 0.908
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”Itis all interconnected

Platforms, Big Data, analytics, algorithms,
machine learning, and artificial intelligence”
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Al is the area of engineering intelligent machines

capable of perceiving the environment through activities such as

perception, learning & reasoning,

and take actions that maximize their chance of success at some goal
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Machine learning —evolved fromdata analytics and pattern recognition —
infers models from data streams, by combining their historical relations

(often including hidden patterns)and their current trends.

An important role to this evolution has been played by the maturity of the
associated enabling technologicalfieldssuchas

e Cloud computing

e BigData

¢ Accessibility/reachability

e Telecommunications, smart devices
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Deep learningis the application of artificial neural networks (neural networks for
short) to leaming tasks using networks of multiple layers. Essentially a statistical
technique for classifying patterns, based on sample data, using neural networks
with multiple layersDeep learning is the application of artificial neural networks
(neural networks for short) to learning tasks using networks of multiple layers.
Essentiallya statistical technique for classifying pattems, based on sample data,

using neural networks with multiple layers
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has shown numerous impressive results and became one of the most
efficient areas of Al, with results suchas

speech recognition,

image recognition,

image deconvolution,

language translation,

game playing,

bioinformatics,

information retrieval,

content recognition,

security (e.g. intrusion detection, malware detection)
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Several industry domains are already making use of the positive results

of the ML applicationin theirarea, such as

. retail shopping (personalized advertising, suggestions,
campaigns),

. b2b (supply planningand customer insights),

. financial services (identification of important data insights,

fraud detection),
. government (utilities),

. health care (wearable sensors, medical exams)
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Cloud Services

CC-by-SA 3.0 by SD Habeger
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subsets iterations

SF

MTF

1

GO wwwwwRr e

8
14
20

2

6

8
14
20

2

6
10
14

0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888
0.001151888

0.9993054
0.9994166
0.9987505
0.9993148
0.9993687
0.9994235
0.9994295
0.9992808
0.9993671
0.9993962
0.9994069
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PET - MTF > Evaluate Model > Evaluation results

4 Metrics
Mean Absolute Error 0.007443 g o
Root Mean Squared Error 0.017249 g w
Relative Absolute Error 0.02343 e
Relative Squared Error 0.002382
Coefficient of 0.997618

Determination N

Error
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(
Request “Tnputs®: {
POST

"inputiT

*ColumnNames™: [

subsets”,

“Lrerstions”,
-
Request Headers )
“vilues™: |
Request Header Description !
.
.
. Required. Passthe API Key here, Obtain L
AuthonizatiorsBearer ebelZ] iy o from the publicher of the APL o
1.
Required. Thelength of the content !
Content-Length bedy. .
gn
Content- Requiredif the request hody is sentin e
Typerapplication/json JSON format., 1
1
Avcepts applicatianyjson Optional. Use the headertoreceive the ¥

response in [SON format.

“GlobalRarameters™: {}
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{
R “Results™: {
esponse output1”: {
“Lype”: “DataTable",
Status Code “
walue®s |

A successful operation rebums status code 200 [DK)

- CalumNames™: [
"scored Labels”

1.
Response Header

" ColumiTypes™: [
Description P———
1.
, L. “values®: |
Cantent- Indicates that the content body izin )
Tepeappiicationsjsan json format,
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PET - MTF [Predictive Exp.]' test returned ["5","3","0.2245","1.04300057888031"]...

Result: {
"Results":{
"outputl”:{

"type":"table",

"value":{
"ColumnNames "subsets","iterations","SF","Scored Labels"],
"ColumnTypes Nullable'1","Nullable'1", "Nullable 1", "Double"],
"values":[["5","3","0.2245","1.04300057888031"]]
}
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ﬂ Scored Labels
0.00211
0.002453
0.003456
0.00455
0.00556

1

& Conleriy,
¥ hy,

PET - MTF [Predi

Exp)

1. VIEW SCHEMA

2. PREDICT

7 Input: input1

Sheet11A20:C25 %
[ My data has headers

Usesampledata | @

v Output: output1
Sheet1!E20
M Include headers

[ ] -

[ Auto-predict
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? 1. VIEW SCHEMA

8| 2. PREDICT

5

Scored Labeld 7 Input: inputl

1 1 3 0.00211 0.969967604 =
=1 Sheet1!A20:C25 =5
2 2 5 0.002453 0.996522844

3: 3 s 0003456 059403125 MMy data has headers

4 a 10 0.00455 0.990347981 2]

5 5 12 0.00556 0.987652421

6| A \ Output: output1

;A Sheet1lE20

9| Include headers

o

1] ﬂ [J Auto-predict
2
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In the firs CASE study, the usability of results may be dependent
on otherfactors as well such as

Quantitative factors

. NNPS, Normalized Noise Power Spectrum
. DQE, Detective Quantum Efficiency

. SNR, Signal to Noise Ratio

. CNR, Contrastto Noise Ratio

. IC, Information Content
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..aswell as Qualitative ones

Patient’s movement (typical exam: 30”)

Body type and fat (thin, normal, obese)

PET scanner operation mode (2D, 3D)

PET machine structure, type and operation configuration

The same istrue for different experiment parameters for the other
case studiesas well
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..therefore, in orderforthe results to be broadly useful
- Similar experiments have to be repeated for several influencing

combinations

Whether that is related to the measurements conditions, geo-location or
whatever else isapplicable.
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* teams working in the similar or even the same problem cannot easily
combine their research results

» Even when they are not reluctant to share their results, and they publish
them, the outcome is not always directly (re)usable

» Even whenthey do provide detailed results, and they can be used, there is a
huge delay incorporated in order to be included in the product life cycle of

some product and be practically useful to other scientists or end users
e.g. in the PET ca® study, we need similar datasets for a wide variety of the infleencing factors
(PET corfigurations, energy, mocel, type) in order to have universally useful data set to be
incorporated by industry manufacturers in a product and server the needs of real end users, all over
the world
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Vision: Knowledge silos

Products, services ortechnologies
developed by one,

serve asfoundations

upon which others can build
complementary

products, services or technologies




Software, cloud services, loT, CPS
...dynamic ecosystems,
Where actors interact across boundaries

Highest added value when

platforms are made accessible to
complementary

third-party technologies, products and
services

that create value for everybody
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The proposed infrastructure can
- Guarantee the results ownership
(data used to trainthe models can be digitally signed and secured)

- Make them useful to a world wide variety of users, without exposing them
(the trained models are needed for the applications, not the input data themselves)

- Services can be easily integrated toend users applications and be useful through
- web sites
- mobile applications
- desktop applications
- social apps
- other 319 party applications

- Besides of providing useful predictions toend users,
end user’s data may be further used toretrofit the models

and contribute to their continue improvement
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Let me find, understand and use my data

M. Taylor, “Should research data be publicly available?”’22 -May-2013.
https://mmw.elsevier.com/connect/should-research-data-be-publicly -
available.

In an open, peaceful society,
knowledge shared is power multiplied

European ParliamentaryResearch Service Blog






